原始関数の一覧

本項は、原始関数の一覧(げんしかんすうのいちらん)である。以下、積分定数は C {\displaystyle C} とする。

a x + b {\displaystyle ax+b} を含む積分

1 a x + b d x = 1 a ln | a x + b | + C {\displaystyle \int {\frac {1}{ax+b}}\,dx={\frac {1}{a}}\ln \left|ax+b\right|+C}
x a x + b d x = x a b a 2 ln | a x + b | + C {\displaystyle \int {\frac {x}{ax+b}}\,dx={\frac {x}{a}}-{\frac {b}{a^{2}}}\ln \left|ax+b\right|+C}
x 2 a x + b d x = 1 2 a 3 ( a 2 x 2 2 a b x + 2 b 2 ln | a x + b | ) + C {\displaystyle \int {\frac {x^{2}}{ax+b}}\,dx={\frac {1}{2a^{3}}}(a^{2}x^{2}-2abx+2b^{2}\ln \left|ax+b\right|)+C}
1 x ( a x + b ) d x = 1 b ln | a x + b x | + C {\displaystyle \int {\frac {1}{x(ax+b)}}\,dx=-{\frac {1}{b}}\ln \left|{\frac {ax+b}{x}}\right|+C}
1 x 2 ( a x + b ) d x = a b 2 ln | a x + b x | 1 b x + C {\displaystyle \int {\frac {1}{x^{2}(ax+b)}}\,dx={\frac {a}{b^{2}}}\ln \left|{\frac {ax+b}{x}}\right|-{\frac {1}{bx}}+C}

a + b x {\displaystyle {\sqrt {a+bx}}} を含む積分

x a + b x d x = 2 15 b 2 ( 3 b x 2 a ) ( a + b x ) 3 2 + C {\displaystyle \int x{\sqrt {a+bx}}\,dx={\frac {2}{15b^{2}}}(3bx-2a)(a+bx)^{\frac {3}{2}}+C}
x 2 a + b x d x = 2 105 b 3 ( 15 b 2 x 2 12 a b x + 8 a 2 ) ( a + b x ) 3 2 + C {\displaystyle \int x^{2}{\sqrt {a+bx}}\,dx={\frac {2}{105b^{3}}}(15b^{2}x^{2}-12abx+8a^{2})(a+bx)^{\frac {3}{2}}+C}
x n a + b x d x = 2 b ( 2 n + 3 ) x n ( a + b x ) 3 2 2 n a b ( 2 n + 3 ) x n 1 a + b x d x {\displaystyle \int x^{n}{\sqrt {a+bx}}\,dx={\frac {2}{b(2n+3)}}x^{n}(a+bx)^{\frac {3}{2}}-{\frac {2na}{b(2n+3)}}\int x^{n-1}{\sqrt {a+bx}}dx}
a + b x x d x = 2 a + b x + a 1 x a + b x d x {\displaystyle \int {\frac {\sqrt {a+bx}}{x}}\,dx=2{\sqrt {a+bx}}+a\int {\frac {1}{x{\sqrt {a+bx}}}}dx}
a + b x x n d x = 1 a ( n 1 ) ( a + b x ) 3 2 x n 1 ( 2 n 5 ) b 2 a ( n 1 ) a + b x x n 1 d x , n 1 {\displaystyle \int {\frac {\sqrt {a+bx}}{x^{n}}}\,dx={\frac {-1}{a(n-1)}}{\frac {(a+bx)^{\frac {3}{2}}}{x^{n-1}}}-{\frac {(2n-5)b}{2a(n-1)}}\int {\frac {\sqrt {a+bx}}{x^{n-1}}}dx,n\neq 1}
1 x a + b x d x = 1 a ln ( a + b x a a + b x + a ) + C , a > 0 {\displaystyle \int {\frac {1}{x{\sqrt {a+bx}}}}\,dx={\frac {1}{\sqrt {a}}}\ln \left({\frac {{\sqrt {a+bx}}-{\sqrt {a}}}{{\sqrt {a+bx}}+{\sqrt {a}}}}\right)+C,a>0}
= 2 a arctan a + b x a + C , a < 0 {\displaystyle ={\frac {2}{\sqrt {-a}}}\arctan {\sqrt {\frac {a+bx}{-a}}}+C,a<0}
1 x n a + b x d x = 1 a ( n 1 ) a + b x x n 1 ( 2 n 3 ) b 2 a ( n 1 ) 1 x n 1 a + b x d x , n 1 {\displaystyle \int {\frac {1}{x^{n}{\sqrt {a+bx}}}}\,dx={\frac {-1}{a(n-1)}}{\frac {\sqrt {a+bx}}{x^{n-1}}}-{\frac {(2n-3)b}{2a(n-1)}}\int {\frac {1}{x^{n-1}}}{\sqrt {a+bx}}dx,n\neq 1}

x 2 ± α 2 ( α 0 ) {\displaystyle x^{2}\pm {\alpha }^{2}(\alpha \neq 0)} を含む積分

1 x 2 + α 2 d x = 1 α arctan x α + C {\displaystyle \int {\frac {1}{x^{2}+\alpha ^{2}}}\,dx={\frac {1}{\alpha }}\arctan {\frac {x}{\alpha }}+C}
1 ± x 2 α 2 d x = 1 2 α ln ( x α ± x + α ) + C {\displaystyle \int {\frac {1}{\pm x^{2}\mp \alpha ^{2}}}\,dx={\frac {1}{2\alpha }}\ln \left({\dfrac {x\mp \alpha }{\pm x+\alpha }}\right)+C}

a x 2 + b {\displaystyle ax^{2}+b} を含む積分

1 a x 2 + b d x = 1 a b arctan a b x + C {\displaystyle \int {\frac {1}{ax^{2}+b}}\,dx={\frac {1}{\sqrt {ab}}}\arctan {\sqrt {\frac {a}{b}}}x+C}

a x 2 + b x + c ( a 0 ) {\displaystyle ax^{2}+bx+c(a\neq 0)} を含む積分

( a x 2 + b x + c ) d x = a x 3 3 + b x 2 2 + c x + C {\displaystyle \int (ax^{2}+bx+c)\,dx={\frac {ax^{3}}{3}}+{\frac {bx^{2}}{2}}+cx+C}

a 2 + x 2 ( a > 0 ) {\displaystyle {\sqrt {a^{2}+x^{2}}}\;(a>0)} を含む積分

a 2 + x 2 d x = 1 2 x a 2 + x 2 + 1 2 a 2 ln ( x + a 2 + x 2 ) + C {\displaystyle \int {\sqrt {a^{2}+x^{2}}}\,dx={\frac {1}{2}}x{\sqrt {a^{2}+x^{2}}}+{\frac {1}{2}}a^{2}\ln \left(x+{\sqrt {a^{2}+x^{2}}}\right)+C}
x 2 a 2 + x 2 d x = 1 8 x ( a 2 + 2 x 2 ) a 2 + x 2 1 8 a 4 ln ( x + a 2 + x 2 ) + C {\displaystyle \int x^{2}{\sqrt {a^{2}+x^{2}}}\,dx={\frac {1}{8}}x(a^{2}+2x^{2}){\sqrt {a^{2}+x^{2}}}-{\frac {1}{8}}a^{4}\ln \left(x+{\sqrt {a^{2}+x^{2}}}\right)+C}
a 2 + x 2 x d x = a 2 + x 2 a ln ( a + a 2 + x 2 x ) + C {\displaystyle \int {\frac {\sqrt {a^{2}+x^{2}}}{x}}\,dx={\sqrt {a^{2}+x^{2}}}-a\ln \left({\frac {a+{\sqrt {a^{2}+x^{2}}}}{x}}\right)+C}
a 2 + x 2 x 2 d x = ln ( x + a 2 + x 2 ) a 2 + x 2 x + C {\displaystyle \int {\frac {\sqrt {a^{2}+x^{2}}}{x^{2}}}\,dx=\ln \left(x+{\sqrt {a^{2}+x^{2}}}\right)-{\frac {\sqrt {a^{2}+x^{2}}}{x}}+C}
1 a 2 + x 2 d x = ln ( x + a 2 + x 2 ) + C {\displaystyle \int {\frac {1}{\sqrt {a^{2}+x^{2}}}}\,dx=\ln \left(x+{\sqrt {a^{2}+x^{2}}}\right)+C}
x 2 a 2 + x 2 d x = 1 2 x a 2 + x 2 1 2 a 2 ln ( a 2 + x 2 + x ) + C {\displaystyle \int {\frac {x^{2}}{\sqrt {a^{2}+x^{2}}}}\,dx={\frac {1}{2}}x{\sqrt {a^{2}+x^{2}}}-{\frac {1}{2}}a^{2}\ln \left({\sqrt {a^{2}+x^{2}}}+x\right)+C}
1 x a 2 + x 2 d x = 1 a ln ( x a + a 2 + x 2 ) + C {\displaystyle \int {\frac {1}{x{\sqrt {a^{2}+x^{2}}}}}\,dx={\frac {1}{a}}\ln \left({\frac {x}{a+{\sqrt {a^{2}+x^{2}}}}}\right)+C}
1 x 2 a 2 + x 2 d x = a 2 + x 2 a 2 x + C {\displaystyle \int {\frac {1}{x^{2}{\sqrt {a^{2}+x^{2}}}}}\,dx=-{\frac {\sqrt {a^{2}+x^{2}}}{a^{2}x}}+C}

x 2 a 2 ( x 2 > a 2 ) {\displaystyle {\sqrt {x^{2}-a^{2}}}\;(x^{2}>a^{2})} を含む積分

1 x 2 a 2 d x = ln ( x + x 2 a 2 ) + C {\displaystyle \int {\frac {1}{\sqrt {x^{2}-a^{2}}}}\,dx=\ln \left(x+{\sqrt {x^{2}-a^{2}}}\right)+C}

a 2 x 2 ( a 2 > x 2 ) {\displaystyle {\sqrt {a^{2}-x^{2}}}\;(a^{2}>x^{2})} を含む積分

1 a 2 x 2 d x = arcsin x a + C = arccos x a + C {\displaystyle \int {\frac {1}{\sqrt {a^{2}-x^{2}}}}\,dx=\arcsin {\frac {x}{a}}+C=-\arccos {\frac {x}{a}}+C}
a 2 x 2 d x = 1 2 x a 2 x 2 + a 2 2 arcsin x a + C {\displaystyle \int {\sqrt {a^{2}-x^{2}}}\,dx={\frac {1}{2}}x{\sqrt {a^{2}-x^{2}}}+{\frac {a^{2}}{2}}\arcsin {\frac {x}{a}}+C}
x 2 a 2 x 2 d x = 1 8 x ( 2 x 2 a 2 ) a 2 x 2 + 1 8 a 4 arcsin x a + C {\displaystyle \int x^{2}{\sqrt {a^{2}-x^{2}}}\,dx={\frac {1}{8}}x(2x^{2}-a^{2}){\sqrt {a^{2}-x^{2}}}+{\frac {1}{8}}a^{4}\arcsin {\frac {x}{a}}+C}
a 2 x 2 x d x = a 2 x 2 a ln ( a + a 2 x 2 x ) + C {\displaystyle \int {\frac {\sqrt {a^{2}-x^{2}}}{x}}\,dx={\sqrt {a^{2}-x^{2}}}-a\ln \left({\frac {a+{\sqrt {a^{2}-x^{2}}}}{x}}\right)+C}
a 2 x 2 x 2 d x = a 2 x 2 x arcsin x a + C {\displaystyle \int {\frac {\sqrt {a^{2}-x^{2}}}{x^{2}}}\,dx=-{\frac {\sqrt {a^{2}-x^{2}}}{x}}-\arcsin {\frac {x}{a}}+C}
1 x a 2 x 2 d x = 1 a ln ( a + a 2 x 2 x ) + C {\displaystyle \int {\frac {1}{x{\sqrt {a^{2}-x^{2}}}}}\,dx=-{\frac {1}{a}}\ln \left({\frac {a+{\sqrt {a^{2}-x^{2}}}}{x}}\right)+C}
x 2 a 2 x 2 d x = 1 2 x a 2 x 2 + 1 2 a 2 arcsin x a + C {\displaystyle \int {\frac {x^{2}}{\sqrt {a^{2}-x^{2}}}}\,dx=-{\frac {1}{2}}x{\sqrt {a^{2}-x^{2}}}+{\frac {1}{2}}a^{2}\arcsin {\frac {x}{a}}+C}
1 x 2 a 2 x 2 d x = a 2 x 2 a 2 x + C {\displaystyle \int {\frac {1}{x^{2}{\sqrt {a^{2}-x^{2}}}}}\,dx=-{\frac {\sqrt {a^{2}-x^{2}}}{a^{2}x}}+C}

R = | a | x 2 + b x + c ( a 0 ) {\displaystyle R={\sqrt {|a|x^{2}+bx+c}}\;(a\neq 0)} を含む積分

d x R = 1 a ln ( 2 a R + 2 a x + b ) ( for  a > 0 ) {\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\ln \left(2{\sqrt {a}}R+2ax+b\right)\qquad ({\mbox{for }}a>0)}
d x R = 1 a arsinh 2 a x + b 4 a c b 2 (for  a > 0 4 a c b 2 > 0 ) {\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\,\operatorname {arsinh} {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(for }}a>0{\mbox{, }}4ac-b^{2}>0{\mbox{)}}}
d x R = 1 a ln | 2 a x + b | (for  a > 0 4 a c b 2 = 0 ) {\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\ln |2ax+b|\quad {\mbox{(for }}a>0{\mbox{, }}4ac-b^{2}=0{\mbox{)}}}
d x R = 1 a arcsin 2 a x + b b 2 4 a c (for  a < 0 4 a c b 2 < 0 ( 2 a x + b ) < b 2 4 a c ) {\displaystyle \int {\frac {dx}{R}}=-{\frac {1}{\sqrt {-a}}}\arcsin {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}\qquad {\mbox{(for }}a<0{\mbox{, }}4ac-b^{2}<0{\mbox{, }}\left(2ax+b\right)<{\sqrt {b^{2}-4ac}}{\mbox{)}}}
d x R 3 = 4 a x + 2 b ( 4 a c b 2 ) R {\displaystyle \int {\frac {dx}{R^{3}}}={\frac {4ax+2b}{(4ac-b^{2})R}}}
d x R 5 = 4 a x + 2 b 3 ( 4 a c b 2 ) R ( 1 R 2 + 8 a 4 a c b 2 ) {\displaystyle \int {\frac {dx}{R^{5}}}={\frac {4ax+2b}{3(4ac-b^{2})R}}\left({\frac {1}{R^{2}}}+{\frac {8a}{4ac-b^{2}}}\right)}
d x R 2 n + 1 = 2 ( 2 n 1 ) ( 4 a c b 2 ) ( 2 a x + b R 2 n 1 + 4 a ( n 1 ) d x R 2 n 1 ) {\displaystyle \int {\frac {dx}{R^{2n+1}}}={\frac {2}{(2n-1)(4ac-b^{2})}}\left({\frac {2ax+b}{R^{2n-1}}}+4a(n-1)\int {\frac {dx}{R^{2n-1}}}\right)}
x R d x = R a b 2 a d x R {\displaystyle \int {\frac {x}{R}}\;dx={\frac {R}{a}}-{\frac {b}{2a}}\int {\frac {dx}{R}}}
x R 3 d x = 2 b x + 4 c ( 4 a c b 2 ) R {\displaystyle \int {\frac {x}{R^{3}}}\;dx=-{\frac {2bx+4c}{(4ac-b^{2})R}}}
x R 2 n + 1 d x = 1 ( 2 n 1 ) a R 2 n 1 b 2 a d x R 2 n + 1 {\displaystyle \int {\frac {x}{R^{2n+1}}}\;dx=-{\frac {1}{(2n-1)aR^{2n-1}}}-{\frac {b}{2a}}\int {\frac {dx}{R^{2n+1}}}}
d x x R = 1 c ln ( 2 c R + b x + 2 c x ) {\displaystyle \int {\frac {dx}{xR}}=-{\frac {1}{\sqrt {c}}}\ln \left({\frac {2{\sqrt {c}}R+bx+2c}{x}}\right)}
d x x R = 1 c arsinh ( b x + 2 c | x | 4 a c b 2 ) {\displaystyle \int {\frac {dx}{xR}}=-{\frac {1}{\sqrt {c}}}\operatorname {arsinh} \left({\frac {bx+2c}{|x|{\sqrt {4ac-b^{2}}}}}\right)}

三角関数を含む積分

cos x d x = sin x + C {\displaystyle \int \cos x\,dx=\sin x+C}
sin x d x = cos x + C {\displaystyle \int -\sin x\,dx=\cos x+C}
sec 2 x d x = tan x + C {\displaystyle \int \sec ^{2}x\,dx=\tan x+C}
csc 2 x d x = cot x + C {\displaystyle \int -\csc ^{2}x\,dx=\cot x+C}
sec x tan x d x = sec x + C {\displaystyle \int \sec x\tan x\,dx=\sec x+C}
csc x cot x d x = csc x + C {\displaystyle \int -\csc x\cot x\,dx=\csc x+C}


tan x d x = ln ( cos x ) + C {\displaystyle \int \tan x\,dx=-\ln(\cos x)+C}
cot x d x = ln ( sin x ) + C {\displaystyle \int \cot x\,dx=\ln(\sin x)+C}
sec x d x = ln ( sec x + tan x ) + C = gd 1 x + C gd 1 x {\displaystyle \int \sec x\,dx=\ln(\sec x+\tan x)+C=\operatorname {gd} ^{-1}x+C\quad \operatorname {gd} ^{-1}x} グーデルマン関数逆関数
csc x d x = ln ( csc x + cot x ) + C = ln ( tan x sin x sin x tan x ) + C {\displaystyle \int \csc x\,dx=-\ln(\csc x+\cot x)+C=\ln \left({\tan x-\sin x \over \sin x\tan x}\right)+C}


sin n x d x = 1 n sin n 1 x cos x + n 1 n sin n 2 x d x + C n 2 {\displaystyle \int \sin ^{n}x\,dx=-{\frac {1}{n}}\sin ^{n-1}x\cos x+{\frac {n-1}{n}}\int \sin ^{n-2}x\,dx+C\quad \forall n\geq 2}
sin 2 x d x = x 2 sin 2 x 4 + C {\displaystyle \int \sin ^{2}x\,dx={\frac {x}{2}}-{\frac {\sin {2x}}{4}}+C}


cos n x d x = 1 n cos n 1 x sin x + n 1 n cos n 2 x d x + C n 2 {\displaystyle \int \cos ^{n}x\,dx={\frac {1}{n}}\cos ^{n-1}x\sin x+{\frac {n-1}{n}}\int \cos ^{n-2}x\,dx+C\quad \forall n\geq 2}
cos 2 x d x = x 2 + sin 2 x 4 + C {\displaystyle \int \cos ^{2}x\,dx={\frac {x}{2}}+{\frac {\sin {2x}}{4}}+C}


tan n x d x = 1 n 1 tan n 1 x tan n 2 x d x + C n 2 {\displaystyle \int \tan ^{n}x\,dx={\frac {1}{n-1}}\tan ^{n-1}x-\int \tan ^{n-2}x\,dx+C\quad \forall n\geq 2}
tan 2 x d x = tan x x + C {\displaystyle \int \tan ^{2}x\,dx=\tan x-x+C}


cot n x d x = 1 n 1 cot n 1 x cot n 2 x d x + C n 2 {\displaystyle \int \cot ^{n}x\,dx={\frac {1}{n-1}}\cot ^{n-1}x-\int \cot ^{n-2}x\,dx+C\quad \forall n\geq 2}
cot 2 x d x = cot x x + C {\displaystyle \int \cot ^{2}x\,dx=-\cot x-x+C}


sec n x d x = 1 n 1 sec n 2 x tan x + n 2 n 1 sec n 2 x d x + C n 2 {\displaystyle \int \sec ^{n}x\,dx={\frac {1}{n-1}}\sec ^{n-2}x\tan x+{\frac {n-2}{n-1}}\int \sec ^{n-2}x\,dx+C\quad \forall n\geq 2}


csc n x d x = 1 n 1 csc n 2 x cot x + n 2 n 1 csc n 2 x d x + C n 2 {\displaystyle \int \csc ^{n}x\,dx=-{\frac {1}{n-1}}\csc ^{n-2}x\cot x+{\frac {n-2}{n-1}}\int \csc ^{n-2}x\,dx+C\quad \forall n\geq 2}

逆三角関数を含む積分

arcsin x d x = x arcsin x + 1 x 2 + C {\displaystyle \int \arcsin x\,dx=x\arcsin x+{\sqrt {1-x^{2}}}+C}
arccos x d x = x arccos x 1 x 2 + C {\displaystyle \int \arccos x\,dx=x\arccos x-{\sqrt {1-x^{2}}}+C}
arctan x d x = x arctan x ln 1 + x 2 + C {\displaystyle \int \arctan x\,dx=x\arctan x-\ln {\sqrt {1+x^{2}}}+C}
arccot x d x = x arccot x + ln 1 + x 2 + C {\displaystyle \int \operatorname {arccot} x\,dx=x\operatorname {arccot} x+\ln {\sqrt {1+x^{2}}}+C}
arcsec x d x = x arcsec x ln ( x x 2 1 ) + C {\displaystyle \int \operatorname {arcsec} x\,dx=x\operatorname {arcsec} x-\ln(x-{\sqrt {x^{2}-1}})+C}
arccsc x d x = x arccsc x + ln ( x + x 2 1 ) + C {\displaystyle \int \operatorname {arccsc} x\,dx=x\operatorname {arccsc} x+\ln(x+{\sqrt {x^{2}-1}})+C}

指数関数を含む積分

e x d x = e x + C {\displaystyle \int e^{x}\,dx=e^{x}+C}
α x d x = α x ln α + C {\displaystyle \int \alpha ^{x}\,dx={\frac {\alpha ^{x}}{\ln \alpha }}+C}
x e a x d x = 1 a 2 ( a x 1 ) e a x + C {\displaystyle \int xe^{ax}\,dx={\frac {1}{a^{2}}}(ax-1)e^{ax}+C}
x n e a x d x = 1 a x n e a x n a x n 1 e a x d x {\displaystyle \int x^{n}e^{ax}\,dx={\frac {1}{a}}x^{n}e^{ax}-{\frac {n}{a}}\int x^{n-1}e^{ax}\,dx}
e a x sin b x d x = e a x a 2 + b 2 ( a sin b x b cos b x ) + C {\displaystyle \int e^{ax}\sin bx\,dx={\frac {e^{ax}}{a^{2}+b^{2}}}(a\sin bx-b\cos bx)+C}
e a x cos b x d x = e a x a 2 + b 2 ( a cos b x + b sin b x ) + C {\displaystyle \int e^{ax}\cos bx\,dx={\frac {e^{ax}}{a^{2}+b^{2}}}(a\cos bx+b\sin bx)+C}

対数関数を含む積分

ln x d x = x ln x x + C {\displaystyle \int \ln x\,dx=x\ln x-x+C}
log α x d x = 1 ln α ( x ln x x ) + C {\displaystyle \int \log _{\alpha }x\,dx={\frac {1}{\ln \alpha }}\left({x\ln x-x}\right)+C}
x n ln x d x = x n + 1 ( n + 1 ) 2 [ ( n + 1 ) ln x 1 ] + C {\displaystyle \int x^{n}\ln x\,dx={\frac {x^{n+1}}{(n+1)^{2}}}[(n+1)\ln x-1]+C}
1 x ln x d x = ln ( ln x ) + C {\displaystyle \int {\frac {1}{x\ln {x}}}\,dx=\ln {(\ln {x})}+C}

双曲線関数を含む積分

sinh x d x = cosh x + C {\displaystyle \int \sinh x\,dx=\cosh x+C}
cosh x d x = sinh x + C {\displaystyle \int \cosh x\,dx=\sinh x+C}
tanh x d x = ln ( cosh x ) + C {\displaystyle \int \tanh x\,dx=\ln \left(\cosh x\right)+C}
coth x d x = ln ( sinh x ) + C {\displaystyle \int \coth x\,dx=\ln \left(\sinh x\right)+C}
sech   x d x = arcsin ( tanh x ) + C = arctan ( sinh x ) + C = gd x + C gd x {\displaystyle \int {\mbox{sech}}\ x\,dx=\arcsin \left(\tanh x\right)+C=\arctan \left(\sinh x\right)+C=\operatorname {gd} x+C\quad \operatorname {gd} x} グーデルマン関数
csch   x d x = ln ( tanh x 2 ) + C {\displaystyle \int {\mbox{csch}}\ x\,dx=\ln \left(\tanh {x \over 2}\right)+C}

定積分

e α x 2 d x = π α {\displaystyle \int _{-\infty }^{\infty }e^{-\alpha x^{2}}\,dx={\sqrt {\frac {\pi }{\alpha }}}}
0 π 2 sin n x d x = 0 π 2 cos n x d x = { n 1 n n 3 n 2 4 5 2 3 , if  n > 1  and  n  is odd n 1 n n 3 n 2 3 4 1 2 π 2 , if  n > 0  and  n  is even {\displaystyle \int _{0}^{\frac {\pi }{2}}{\mbox{sin}}^{n}x\,dx=\int _{0}^{\frac {\pi }{2}}{\mbox{cos}}^{n}x\,dx={\begin{cases}{\frac {n-1}{n}}\cdot {\frac {n-3}{n-2}}\cdot \cdots \cdot {\frac {4}{5}}\cdot {\frac {2}{3}},&{\mbox{if }}n>1{\mbox{ and }}n{\mbox{ is odd}}\\{\frac {n-1}{n}}\cdot {\frac {n-3}{n-2}}\cdot \cdots \cdot {\frac {3}{4}}\cdot {\frac {1}{2}}\cdot {\frac {\pi }{2}},&{\mbox{if }}n>0{\mbox{ and }}n{\mbox{ is even}}\end{cases}}}

関連項目

Project:数学
プロジェクト 数学
Portal:数学
ポータル 数学
Precalculus
極限
微分法
積分法
ベクトル解析
多変数微分積分学
級数
特殊関数と数学定数
歴史(英語版)
一覧
カテゴリ カテゴリ
典拠管理データベース: 国立図書館 ウィキデータを編集
  • ドイツ