極限の一覧

極限の一覧は、解析学における代表的な関数の極限の一覧である。極限に関しては極限の項を参照のこと。

以下で、xは変数、a、b、cは定数である。

一般的な極限の性質

If  lim x c f ( x ) = L 1  and  lim x c g ( x ) = L 2  then: {\displaystyle {\mbox{If }}\lim _{x\to c}f(x)=L_{1}{\mbox{ and }}\lim _{x\to c}g(x)=L_{2}{\mbox{ then:}}}
lim x c [ f ( x ) ± g ( x ) ] = L 1 ± L 2 {\displaystyle \lim _{x\to c}\,[f(x)\pm g(x)]=L_{1}\pm L_{2}}
lim x c [ f ( x ) g ( x ) ] = L 1 × L 2 {\displaystyle \lim _{x\to c}\,[f(x)g(x)]=L_{1}\times L_{2}}
lim x c f ( x ) g ( x ) = L 1 L 2  if  L 2 0 {\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}={\frac {L_{1}}{L_{2}}}\qquad {\mbox{ if }}L_{2}\neq 0}
lim x c f ( x ) n = L 1 n  if  n  is a positive integer {\displaystyle \lim _{x\to c}\,f(x)^{n}=L_{1}^{n}\qquad {\mbox{ if }}n{\mbox{ is a positive integer}}}
lim x c f ( x ) 1 n = L 1 1 n  if  n  is a positive integer, and if  n  is even, then  L 1 > 0 {\displaystyle \lim _{x\to c}\,f(x)^{1 \over n}=L_{1}^{1 \over n}\qquad {\mbox{ if }}n{\mbox{ is a positive integer, and if }}n{\mbox{ is even, then }}L_{1}>0}
lim x c f ( x ) g ( x ) = lim x c f ( x ) g ( x )  if  lim x c f ( x ) = lim x c g ( x ) = 0  or  lim x c | g ( x ) | = + {\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}\qquad {\mbox{ if }}\lim _{x\to c}f(x)=\lim _{x\to c}g(x)=0{\mbox{ or }}\lim _{x\to c}|g(x)|=+\infty } (ロピタルの定理)

単純な関数

lim x c a = a {\displaystyle \lim _{x\to c}a=a}
lim x c x = c {\displaystyle \lim _{x\to c}x=c}
lim x c ( a x + b ) = a c + b {\displaystyle \lim _{x\to c}(ax+b)=ac+b}
lim x c x r = c r  if  r  is a positive integer {\displaystyle \lim _{x\to c}x^{r}=c^{r}\qquad {\mbox{ if }}r{\mbox{ is a positive integer}}}
lim x + 0 1 x r = + {\displaystyle \lim _{x\to +0}{\frac {1}{x^{r}}}=+\infty }
lim x 0 1 x r = { , if  r  is odd + , if  r  is even {\displaystyle \lim _{x\to -0}{\frac {1}{x^{r}}}=\left\{{\begin{matrix}-\infty ,&{\mbox{if }}r{\mbox{ is odd}}\\+\infty ,&{\mbox{if }}r{\mbox{ is even}}\end{matrix}}\right.}

対数関数と指数関数

lim x + 0 log a x = { , a > 1 , a < 1 {\displaystyle \lim _{x\to +0}\log _{a}x={\begin{cases}-\infty ,&a>1\\\infty ,&a<1\end{cases}}}
lim x a x = 0  if  a > 1 {\displaystyle \lim _{x\to -\infty }a^{x}=0\qquad {\mbox{ if }}a>1}

三角関数

lim x 0 sin x x = 1 {\displaystyle \lim _{x\to 0}{\frac {\sin x}{x}}=1}
lim x a sin x = sin a {\displaystyle \lim _{x\to a}\sin x=\sin a}
lim x a cos x = cos a {\displaystyle \lim _{x\to a}\cos x=\cos a}
lim x n ± 0 tan ( π x + π 2 ) =  for any integer  n {\displaystyle \lim _{x\to n\pm 0}\tan \left(\pi x+{\frac {\pi }{2}}\right)=\mp \infty \qquad {\mbox{ for any integer }}n}

その他の諸関数

lim x N x = 0  for any real number  N {\displaystyle \lim _{x\to \infty }{\frac {N}{x}}=0{\mbox{ for any real number }}N}
lim x x N = { , N > 0 does not exist , N = 0 , N < 0 {\displaystyle \lim _{x\to \infty }{\frac {x}{N}}={\begin{cases}\infty ,&N>0\\{\mbox{does not exist}},&N=0\\-\infty ,&N<0\end{cases}}}
lim x x N = { , N > 0 1 , N = 0 0 , N < 0 {\displaystyle \lim _{x\to \infty }x^{N}={\begin{cases}\infty ,&N>0\\1,&N=0\\0,&N<0\end{cases}}}
lim x N x = { , N > 1 1 , N = 1 0 , N < 1 {\displaystyle \lim _{x\to \infty }N^{x}={\begin{cases}\infty ,&N>1\\1,&N=1\\0,&N<1\end{cases}}}
lim x N x = lim x 1 / N x = 0  for any  N > 1 {\displaystyle \lim _{x\to \infty }N^{-x}=\lim _{x\to \infty }1/N^{x}=0{\mbox{ for any }}N>1}
lim x N x = { 1 , N > 0 0 , N = 0 does not exist , N < 0 {\displaystyle \lim _{x\to \infty }{\sqrt[{x}]{N}}={\begin{cases}1,&N>0\\0,&N=0\\{\mbox{does not exist}},&N<0\end{cases}}}
lim x x N =  for any positive integer  N {\displaystyle \lim _{x\to \infty }{\sqrt[{N}]{x}}=\infty {\mbox{ for any positive integer }}N}
lim x log x = {\displaystyle \lim _{x\to \infty }\log x=\infty }
lim x + 0 log x = {\displaystyle \lim _{x\to +0}\log x=-\infty }

備考

上記に使われた用語の和訳を以下に示す。

  • positive - 正の
  • integer - 整数
  • even - 偶数の
  • odd - 奇数の
  • any - 任意の
  • real - 実数の
  • does not exist - 存在せず

関連項目