Uranium tetraklorida

Uranium tetraklorida
Struktur kristal uranium tetraklorida
Nama
Nama IUPAC
Uranium(IV) klorida
Nama lain
Tetraklorouranium
Uranium tetraklorida
Urano klorida
Penanda
Nomor CAS
  • 10026-10-5 YaY
Model 3D (JSmol)
  • Gambar interaktif
3DMet {{{3DMet}}}
ChemSpider
  • 19969614 YaY
Nomor EC
PubChem CID
  • 66210
Nomor RTECS {{{value}}}
UNII
  • 8E7IB152RL YaY
CompTox Dashboard (EPA)
  • DTXSID1064906 Sunting ini di Wikidata
InChI
  • InChI=1S/4ClH.2U/h4*1H;;/q;;;;2*+2/p-4 YaY
    Key: AYQSGSWJZFIBLR-UHFFFAOYSA-J YaY
  • InChI=1/4ClH.2U/h4*1H;;/q;;;;2*+2/p-4
    Key: AYQSGSWJZFIBLR-XBHQNQODAS
SMILES
  • [U+4].[Cl-].[Cl-].[Cl-].[Cl-]
Sifat
Rumus kimia
UCl4
Massa molar 379,84 g/mol
Penampilan Padatan hijau zaitun
Densitas 4,87 g/cm3
Titik lebur 590 °C (1.094 °F; 863 K)
Titik didih 791 °C (1.456 °F; 1.064 K)
Kelarutan dalam air
Hidrolisis
Struktur
Struktur kristal
Oktahedral
Senyawa terkait
Senyawa terkait
Uranium triklorida
Uranium pentaklorida
Uranium heksaklorida
Kecuali dinyatakan lain, data di atas berlaku pada suhu dan tekanan standar (25 °C [77 °F], 100 kPa).
N verifikasi (apa ini YaYN ?)
Referensi

Uranium tetraklorida adalah sebuah senyawa anorganik, garam dari uranium dan klorin, dengan rumus UCl4. Senyawa ini merupakan padatan berwarna hijau zaitun yang bersifat higroskopis. Ia digunakan dalam proses pemisahan isotop elektromagnetik (electromagnetic isotope separation, EMIS) untuk pengayaan uranium. Ia adalah salah satu bahan awal utama untuk kimia organouranium.

Sintesis dan struktur

Kristal tunggal uranium tetraklorida (ruang pandang sekitar 7 mm)

Uranium tetraklorida umumnya disintesis melalui reaksi antara uranium trioksida (UO3) dan heksakloropropena. Pelarut aduk UCl4 dapat dibentuk melalui reaksi yang lebih sederhana dari UI4 dengan hidrogen klorida dalam pelarut organik.

Uranium tetraklorida juga membentuk nonahidrat, yang dapat diproduksi dengan menguapkan larutan UCl4 yang agak asam.[1]

Menurut kristalografi sinar-X, pusat-pusat uranium memiliki delapan koordinat, dikelilingi oleh delapan atom klorin, empat pada 264 pm dan empat lainnya pada 287 pm.[2]

Sifat kimia

Pelarutan dalam pelarut protik lebih rumit. Ketika UCl4 ditambahkan ke dalam air, ion akua uranium terbentuk.

UCl4 + xH2O → [U(H2O)x]4+ + 4Cl

Ion akua [U(H2O)x]4+, (x = 8 atau 9[3]) terhidrolisis dengan kuat.

[U(H2O)x]4+ is in equilibrium with [U(H2O)x−1(OH)]3+ + H+

Nilai pKa untuk reaksi ini sekitar 1,6,[4] sehingga hidrolisis hanya terjadi pada larutan dengan kekuatan asam 1 mol dm−3 atau lebih kuat (pH < 0). Hidrolisis lebih lanjut terjadi pada pH > 3. Kompleks kloro lemah dari ion akua dapat terbentuk. Perkiraan yang dipublikasikan mengenai nilai log K untuk pembentukan [UCl]3+(aq) bervariasi, mulai dari −0,5 hingga +3, karena kesulitan dalam menangani hidrolisis simultan.[4]

Dengan alkohol, solvolisis parsial dapat terjadi.

UCl4 + xROH is in equilibrium with UCl4−x(OR)x + xHCl

Uranium tetraklorida larut dalam pelarut non-protik seperti tetrahidrofuran, asetonitril, dimetil formamida, dll. yang dapat bertindak sebagai basa Lewis. Larutan dengan rumus UCl4Lx akan terbentuk, yang dapat diisolasi. Pelarut tersebut harus benar-benar bebas dari air terlarut, atau hidrolisis akan terjadi, dengan pelarut, S, mengambil proton yang dilepaskan.

UCl4 + H2O + S is in equilibrium with UCl3(OH) + SH+ +Cl

Molekul pelarut dapat digantikan oleh ligan lain dalam reaksi seperti

UCl4 + 2Cl → [UCl6]2−.

Pelarut tidak ditampilkan, sama seperti ketika kompleks ion logam lain terbentuk dalam larutan berair.

Larutan UCl4 rentan terhadap oksidasi oleh udara, sehingga menghasilkan kompleks ion uranil.

Aplikasi

Uranium tetraklorida diproduksi secara komersial melalui reaksi antara karbon tetraklorida dengan uranium dioksida (UO2) murni pada suhu 370 °C. Senyawa ini telah digunakan sebagai umpan dalam proses pemisahan isotop elektromagnetik (electromagnetic isotope separation, EMIS) untuk pengayaan uranium. Dimulai pada tahun 1944, Oak Ridge Y-12 Plant mengubah UO3 menjadi umpan UCl4 untuk Alpha Calutron milik Ernest O. Lawrence. Manfaat utamanya adalah uranium tetraklorida yang digunakan dalam kalutron tersebut tidak sekorosif uranium heksafluorida yang digunakan di sebagian besar teknologi pengayaan lainnya. Namun, pada tahun 1980-an, Irak secara tak terduga menghidupkan kembali opsi ini sebagai bagian dari program senjata nuklirnya. Dalam proses pengayaan, uranium tetraklorida diionisasi menjadi plasma uranium.

Ion-ion uranium tersebut kemudian dipercepat dan dilewatkan melalui medan magnet yang kuat. Setelah menempuh setengah lingkaran, berkas sinar dibagi menjadi wilayah yang lebih dekat ke dinding luar, yang terdeplesi, dan wilayah yang lebih dekat ke dinding dalam, yang diperkaya dengan 235U. Besarnya energi yang dibutuhkan untuk mempertahankan medan magnet yang kuat serta rendahnya tingkat pemulihan bahan baku uranium dan pengoperasian fasilitas yang lebih lambat dan lebih tidak nyaman menjadikannya sebagai pilihan yang tidak mungkin untuk pabrik pengayaan skala besar.

Pekerjaan sedang dilakukan dalam penggunaan campuran uranium klorida–alkali klorida sebagai bahan bakar reaktor dalam reaktor garam cair. Leburan uranium tetraklorida yang dilarutkan dalam litium kloridakalium klorida eutektik juga telah dieksplorasi sebagai cara untuk memulihkan aktinida dari bahan bakar nuklir yang diiradiasi melalui pemrosesan ulang nuklir pirokimia.[5]

Keselamatan

Seperti semua garam uranium yang larut dalam air, uranium tetraklorida bersifat nefrotoksik (beracun bagi ginjal) dan dapat menyebabkan kerusakan ginjal yang parah dan gagal ginjal akut jika tertelan.

Referensi

  1. ^ Thomas Kasperowicz; Niko T. Flosbach; Dennis Grödler; Hannah Kasperowicz; Jörg-M. Neudörfl; Tobias Rennebaum; Mathias S. Wickleder; Markus Zegke (2022). "Solvated Actinoids: Methanol, Ethanol, and Water Adducts of Thorium and Uranium Tetrachloride". European Journal of Inorganic Chemistry (dalam bahasa Inggris) (31). doi:10.1002/ejic.202200227 alt=Dapat diakses gratis. 
  2. ^ Taylor, J.C.; Wilson, P.W. (1973). "A neutron-diffraction study of anhydrous uranium tetrachloride". Acta Crystallogr. B. 29 (9): 1942–1944. doi:10.1107/S0567740873005790 alt=Dapat diakses gratis. 
  3. ^ David, F. (1986). "Thermodynamic properties of lanthanide and actinide ions in aqueous solution". Journal of the Less Common Metals. 121: 27–42. doi:10.1016/0022-5088(86)90511-4. 
  4. ^ a b IUPAC SC-Database[pranala nonaktif permanen] Basis data yang komprehensif dari data yang dipublikasikan tentang konstanta kesetimbangan ligan dan kompleks logam
  5. ^ Olander, D. R. dan Camahort, J. L. (1966), Reaction of chlorine and uranium tetrachloride in the fused lithium chloride-potassium chloride eutectic. AIChE Journal, 12: 693–699. DOI:10.1002/aic.690120414
  • l
  • b
  • s
U(II)
U(III)
  • UF3
  • UCl3
  • UBr3
  • UI3
  • UP
  • U(OH)3
  • UH3
  • UN
Senyawa organouranium(III)
  • U(C5H5)3
  • (IV)
    • U(BH4)4
    • UC
    • UCl4
    • UF4
    • UBr4
    • UI4
    • UO2
    • UH4
    • USi2
    • US2
    • USe2
    • UTe2
    • U(SO4)2
    Senyawa organouranium(IV)
  • U(C8H8)2
  • U(C5H5)4
  • U(C5H5)3Cl
  • U(IV,V)
    • U2N3
    U(IV,VI)
    • U3O8
    U(V)
    • UCl5
    • UF5
    • UBr5
    • UI5
    • U2O5
    U(VI)
    • (NH4)2U2O7
    • Na2U2O7
    • UCl6
    • UF6
    • U(PO4)2
    • UO3
    • UO4
    • UO2(CH3COO)2
    • UO2(CHO2)2
    • UO2CO3
    • UO2CO3·2(NH4)2CO3
    • UO2Cl2
    • UO2F2
    • UO2(NO3)2
    • UO2(OH)2
    • (UO2)2(OH)4
    • UO2(SO4)2
    • ZnUO2(CH3COO)4
    • UN2
    • H2UO4
    • Na4UO2(CO3)3
    U(XII)
    • UO6 (hipotetis)
    • l
    • b
    • s
    Garam dan derivat kovalen ion klorida
    HCl He
    LiCl BeCl2 BCl3
    B2Cl4
    CCl4 NCl3
    ClN3
    Cl2O
    ClO2
    Cl2O7
    ClF
    ClF3
    ClF5
    Ne
    NaCl MgCl2 AlCl
    AlCl3
    SiCl4 P2Cl4
    PCl3
    PCl5
    S2Cl2
    SCl2
    SCl4
    Cl2 Ar
    KCl CaCl
    CaCl2
    ScCl3 TiCl2
    TiCl3
    TiCl4
    VCl2
    VCl3
    VCl4
    VCl5
    CrCl2
    CrCl3
    CrCl4
    MnCl2 FeCl2
    FeCl3
    CoCl2
    CoCl3
    NiCl2 CuCl
    CuCl2
    ZnCl2 GaCl2
    GaCl3
    GeCl2
    GeCl4
    AsCl3
    AsCl5
    Se2Cl2
    SeCl4
    BrCl KrCl
    RbCl SrCl2 YCl3 ZrCl3
    ZrCl4
    NbCl4
    NbCl5
    MoCl2
    MoCl3
    MoCl4
    MoCl5
    MoCl6
    TcCl4 RuCl3 RhCl3 PdCl2 AgCl CdCl2 InCl
    InCl2
    InCl3
    SnCl2
    SnCl4
    SbCl3
    SbCl5
    Te3Cl2
    TeCl4
    ICl
    ICl3
    XeCl
    XeCl2
    CsCl BaCl2   HfCl4 TaCl5 WCl2
    WCl3
    WCl4
    WCl5
    WCl6
    Re3Cl9
    ReCl4
    ReCl5
    ReCl6
    OsCl4 IrCl2
    IrCl3
    IrCl4
    PtCl2
    PtCl4
    AuCl
    AuCl3
    Hg2Cl2,
    HgCl2
    TlCl PbCl2,
    PbCl4
    BiCl3 PoCl2,
    PoCl4
    AtCl RnCl2
    FrCl RaCl2   Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
    LaCl3 CeCl3 PrCl3 NdCl2,
    NdCl3
    PmCl3 SmCl2,
    SmCl3
    EuCl2,
    EuCl3
    GdCl3 TbCl3 DyCl2,
    DyCl3
    HoCl3 ErCl3 TmCl2
    TmCl3
    YbCl2
    YbCl3
    LuCl3
    AcCl3 ThCl4 PaCl5 UCl3
    UCl4
    UCl5
    UCl6
    NpCl4 PuCl3 AmCl2
    AmCl3
    CmCl3 BkCl3 CfCl3 EsCl3 Fm Md No LrCl3
    • l
    • b
    • s
    Senyawa halida dari aktinida
    Ac Th Pa U Np Pu Am Cm Bk Cf Es
    +6 UF6
    UCl6
    NpF6 PuF6 AmF6 EsF6
    +5 PaF5
    PaCl5
    PaBr5
    PaI5
    UF5
    UCl5
    UBr5
    NpF5 PuF5
    +4 ThF4
    ThCl4
    ThBr4
    ThI4
    PaF4
    PaCl4
    PaBr4
    PaI4
    UF4
    UCl4
    UBr4
    UI4
    NpF4
    NpCl4
    NpBr4
    PuF4 AmF4 CmF4 BkF4 CfF4 EsF4
    +3 AcF3
    AcCl3
    AcBr3
    AcI3
    ThI3 UF3
    UCl3
    UBr3
    UI3
    NpF3
    NpCl3
    NpBr3
    NpI3
    PuF3
    PuCl3
    PuBr3
    PuI3
    AmF3
    AmCl3
    AmBr3
    AmI3
    CmF3
    CmCl3
    CmBr3
    CmI3
    BkF3
    BkCl3
    BkBr3
    BkI3
    CfF3
    CfCl3
    CfBr3
    CfI3
    EsF3
    EsCl3
    EsBr3
    EsI3
    +2 ThI2 AmF2
    AmCl2
    AmBr2
    AmI2
    CfI2 EsCl2
    EsBr2
    EsI2