Háromszögszámok

A háromszögszámoknak nevezik a matematikában azokat a számokat, amelyek előállnak az első valahány egymást követő természetes szám összegeként. A sokszögszámok közé tartoznak. Nevüket onnan nyerték, hogy kavicsokkal vagy más módon kirakva őket, szabályos háromszög alakba rendezhetőek:

1  3  6  10
*          *
*  *
         *
*  *
*  *  *
         *
*  *
*  *  *
*  *  *  *

Formálisan kifejezve a háromszögszámok az 1+2+3+…+(n-1)+n = i = 1 n i {\displaystyle \textstyle \sum _{i=1}^{n}i} alakban felírható számok. A számtani sorozat összegképletét felhasználva explicit képlet adható az n-edik háromszögszámra: i = 1 n i = n ( n + 1 ) 2 {\displaystyle \textstyle \sum _{i=1}^{n}i=\textstyle {\frac {n(n+1)}{2}}}

A sorozat eleje

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431 (A000217 sorozat az OEIS-ben)

Tulajdonságok

  • A háromszögszámok reciprokainak összege konvergens, határértéke 2:
  n = 1 1 n 2 + n 2 = 2 n = 1 1 n 2 + n = 2. {\displaystyle \!\ \sum _{n=1}^{\infty }{1 \over {{n^{2}+n} \over 2}}=2\sum _{n=1}^{\infty }{1 \over {n^{2}+n}}=2.}
ami a teleszkopikus összeg segítségével mutatható meg:
  n = 1 1 n ( n + 1 ) = n = 1 ( 1 n 1 n + 1 ) = 1 {\displaystyle \!\ \sum _{n=1}^{\infty }{1 \over {n(n+1)}}=\sum _{n=1}^{\infty }\left({\frac {1}{n}}-{\frac {1}{n+1}}\right)=1}
  • Carl Friedrich Gauss fedezte fel 1796-ban, hogy minden pozitív egész felírható legfeljebb három háromszögszám összegeként, melyet a naplójában a következőképpen jegyzett fel: „Heureka! num= Δ + Δ + Δ.”
  • Két egymás utáni háromszögszám összege négyzetszám.

Előfordulások

  • Az ikozaéder egy lapjának csúcsait a közepével összekötve egy gúla élvázát kapjuk. A dodekaéderekből megépített Almássy-féle ikozaéder sorozat ilyen gúlájában a nagygömb- és a csillagrétegek felváltva követik egymást. A gúla egymást követő rétegeiben az alakzatok száma a háromszögszámok sorozata szerint növekszik (1 csillag, 3 nagygömb, 6 csillag, ...).

Források

  • Háromszögszámok az egész számok sorozatainak online enciklopédiájában
  • MathWorld

Kapcsolódó szócikkek

Sablon:Természetes számok
  • m
  • v
  • sz
Természetes számok osztályozása
Hatványok és kap-
csolódó számok
a × 2b ± 1
alakú számok
Egyéb polinomikus
számok
Rekurzívan meg-
adott számok
Más számok meg-
határozott halmazával
rendelkező számok
Specifikus össze-
gekkel kifejez-
hető számok
Szitával
generált számok
Kódokkal
kapcsolatos
  • Meertens
Figurális
számok
2 di-
men-
ziós
közép-
pontos
nem közép-
pontos
3 di-
men-
ziós
közép-
pontos
nem közép-
pontos
4 di-
men-
ziós
közép-
pontos
  • Középpontos pentatóp-
  • Négyzetes háromszög
nem közép-
pontos
  • Pentatóp-
Álprímek
Kombinatorikus
számok
  • Bell
  • Cake
  • Catalan
  • Dedekind
  • Delannoy
  • Euler
  • Fuss–Catalan
  • Lusta ételszállító-sorozat
  • Lobb
  • Motzkin
  • Narayana
  • Rendezett Bell
  • Schröder
  • Schröder–Hipparchus
Számelméleti
függvények
σ(n) alapján
Ω(n) alapján
φ(n) alapján
s(n)
Egyéb
kongruenciák
  • Wieferich
  • Wall–Sun–Sun
  • Wolstenholme-prím
  • Wilson
  • Egyéb prím-
    tényezővel vagy
    osztóval kapcso-
    latos számok
    Szórakoztató
    matematika
    Szám-
    rendszer-
    függő
    számok
    • matematika Matematikaportál • összefoglaló, színes tartalomajánló lap