WFS1

Protein-coding gene in the species Homo sapiens
WFS1
Identifiers
AliasesWFS1, CTRCT41, WFRS, WFS, WFSL, wolframin ER transmembrane glycoprotein
External IDsOMIM: 606201; MGI: 1328355; HomoloGene: 4380; GeneCards: WFS1; OMA:WFS1 - orthologs
Gene location (Human)
Chromosome 4 (human)
Chr.Chromosome 4 (human)[1]
Chromosome 4 (human)
Genomic location for WFS1
Genomic location for WFS1
Band4p16.1Start6,269,849 bp[1]
End6,303,265 bp[1]
Gene location (Mouse)
Chromosome 5 (mouse)
Chr.Chromosome 5 (mouse)[2]
Chromosome 5 (mouse)
Genomic location for WFS1
Genomic location for WFS1
Band5|5 B3Start37,123,448 bp[2]
End37,146,549 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • right ovary

  • left ovary

  • body of uterus

  • nucleus accumbens

  • stromal cell of endometrium

  • popliteal artery

  • tibial arteries

  • ascending aorta

  • right lung

  • gastric mucosa
Top expressed in
  • olfactory tubercle

  • nucleus accumbens

  • Region I of hippocampus proper

  • extraocular muscle

  • digastric muscle

  • thalamic reticular nucleus

  • plantaris muscle

  • aortic valve

  • superior frontal gyrus

  • sternocleidomastoid muscle
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
  • ATPase binding
  • protein binding
  • ubiquitin protein ligase binding
  • calcium-dependent protein binding
  • calmodulin binding
  • proteasome binding
Cellular component
  • integral component of membrane
  • endoplasmic reticulum membrane
  • membrane
  • integral component of endoplasmic reticulum membrane
  • dendrite
  • endoplasmic reticulum
  • proteasome complex
  • endoplasmic reticulum lumen
  • integral component of synaptic vesicle membrane
Biological process
  • negative regulation of neuron apoptotic process
  • negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway
  • calcium ion homeostasis
  • glucose homeostasis
  • kidney development
  • protein stabilization
  • nervous system process
  • positive regulation of growth
  • negative regulation of transcription by RNA polymerase II
  • hearing
  • endoplasmic reticulum calcium ion homeostasis
  • protein maturation by protein folding
  • negative regulation of ATF6-mediated unfolded protein response
  • negative regulation of DNA-binding transcription factor activity
  • response to endoplasmic reticulum stress
  • ER overload response
  • IRE1-mediated unfolded protein response
  • ubiquitin-dependent ERAD pathway
  • renal water homeostasis
  • negative regulation of programmed cell death
  • positive regulation of protein ubiquitination
  • negative regulation of type B pancreatic cell apoptotic process
  • visual perception
  • positive regulation of calcium ion transport
  • pancreas development
  • endoplasmic reticulum unfolded protein response
  • olfactory behavior
  • post-translational protein modification
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

7466

22393

Ensembl

ENSG00000109501

ENSMUSG00000039474

UniProt

O76024

P56695

RefSeq (mRNA)

NM_006005
NM_001145853

NM_011716

RefSeq (protein)

NP_001139325
NP_005996

NP_035846

Location (UCSC)Chr 4: 6.27 – 6.3 MbChr 5: 37.12 – 37.15 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Wolframin is a protein that in humans is encoded by the WFS1 gene.[5][6][7]

Function

This gene encodes a transmembrane protein, which is located primarily in the endoplasmic reticulum and ubiquitously expressed with highest levels in brain, pancreas, heart, and insulinoma beta-cell lines.[7] Wolframin appears to function as a cation-selective ion channel.[8]

Clinical significance

Mutations in this gene are associated with Wolfram syndrome, also called DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness), an autosomal recessive disorder. The disease is characterized by non-immune insulin-dependent diabetes mellitus and bilateral progressive optic atrophy, usually presenting in childhood or early adult life. Diverse neurologic symptoms, including a predisposition to psychiatric illness, may also be associated with this disorder. A large number and variety of mutations in this gene, particularly in exon 8, can be associated with this syndrome. Mutations in this gene can also cause autosomal dominant deafness 6 (DFNA6), also known as DFNA14 or DFNA38.[7]

Mutations in this gene have also been associated with congenital cataracts.[9]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000109501 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000039474 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Polymeropoulos MH, Swift RG, Swift M (Jan 1995). "Linkage of the gene for Wolfram syndrome to markers on the short arm of chromosome 4". Nat Genet. 8 (1): 95–7. doi:10.1038/ng0994-95. PMID 7987399. S2CID 13210147.
  6. ^ Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E, Mueckler M, Marshall H, Donis-Keller H, Crock P, Rogers D, Mikuni M, Kumashiro H, Higashi K, Sobue G, Oka Y, Permutt MA (Oct 1998). "A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome)". Nat Genet. 20 (2): 143–8. doi:10.1038/2441. PMID 9771706. S2CID 11917210.
  7. ^ a b c "WFS1 wolframin ER transmembrane glycoprotein [ Homo sapiens (human) ]". National Center for Biotechnology Information.
  8. ^ Osman AA, Saito M, Makepeace C, Permutt MA, Schlesinger P, Mueckler M (December 2003). "Wolframin expression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium". J. Biol. Chem. 278 (52): 52755–62. doi:10.1074/jbc.M310331200. PMID 14527944.
  9. ^ Berry V, Gregory-Evans C, Emmett W, Waseem N, Raby J, Prescott D, Moore AT, Bhattacharya SS (March 2013). "Wolfram gene (WFS1) mutation causes autosomal dominant congenital nuclear cataract in humans". Eur. J. Hum. Genet. 21 (12): 1356–60. doi:10.1038/ejhg.2013.52. PMC 3831071. PMID 23531866.

Further reading

  • Khanim F, Kirk J, Latif F, Barrett TG (2001). "WFS1/wolframin mutations, Wolfram syndrome, and associated diseases". Hum. Mutat. 17 (5): 357–67. doi:10.1002/humu.1110. PMID 11317350. S2CID 2944382.
  • Cryns K, Sivakumaran TA, Van den Ouweland JM, et al. (2004). "Mutational spectrum of the WFS1 gene in Wolfram syndrome, nonsyndromic hearing impairment, diabetes mellitus, and psychiatric disease". Hum. Mutat. 22 (4): 275–87. doi:10.1002/humu.10258. PMID 12955714. S2CID 39815754.
  • McHugh RK, Friedman RA (2006). "Genetics of hearing loss: Allelism and modifier genes produce a phenotypic continuum". The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology. 288 (4): 370–81. doi:10.1002/ar.a.20297. PMID 16550584.
  • Lesperance MM, Hall JW, Bess FH, et al. (1996). "A gene for autosomal dominant nonsyndromic hereditary hearing impairment maps to 4p16.3". Hum. Mol. Genet. 4 (10): 1967–72. doi:10.1093/hmg/4.10.1967. PMID 8595423.
  • Strom TM, Hörtnagel K, Hofmann S, et al. (1999). "Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein". Hum. Mol. Genet. 7 (13): 2021–8. doi:10.1093/hmg/7.13.2021. PMID 9817917.
  • Van Camp G, Kunst H, Flothmann K, et al. (1999). "A gene for autosomal dominant hearing impairment (DFNA14) maps to a region on chromosome 4p16.3 that does not overlap the DFNA6 locus". J. Med. Genet. 36 (7): 532–6. doi:10.1136/jmg.36.7.532. PMC 1734405. PMID 10424813.
  • Hardy C, Khanim F, Torres R, et al. (1999). "Clinical and molecular genetic analysis of 19 Wolfram syndrome kindreds demonstrating a wide spectrum of mutations in WFS1". Am. J. Hum. Genet. 65 (5): 1279–90. doi:10.1086/302609. PMC 1288280. PMID 10521293.
  • Furlong RA, Ho LW, Rubinsztein JS, et al. (2000). "A rare coding variant within the wolframin gene in bipolar and unipolar affective disorder cases". Neurosci. Lett. 277 (2): 123–6. doi:10.1016/S0304-3940(99)00865-4. PMID 10624825. S2CID 31662957.
  • Awata T, Inoue K, Kurihara S, et al. (2000). "Missense variations of the gene responsible for Wolfram syndrome (WFS1/wolframin) in Japanese: possible contribution of the Arg456His mutation to type 1 diabetes as a nonautoimmune genetic basis". Biochem. Biophys. Res. Commun. 268 (2): 612–6. doi:10.1006/bbrc.2000.2169. PMID 10679252.
  • Ohtsuki T, Ishiguro H, Yoshikawa T, Arinami T (2000). "WFS1 gene mutation search in depressive patients: detection of five missense polymorphisms but no association with depression or bipolar affective disorder". Journal of Affective Disorders. 58 (1): 11–7. doi:10.1016/S0165-0327(99)00099-3. PMID 10760554.
  • Gómez-Zaera M, Strom TM, Rodríguez B, et al. (2001). "Presence of a major WFS1 mutation in Spanish Wolfram syndrome pedigrees". Mol. Genet. Metab. 72 (1): 72–81. doi:10.1006/mgme.2000.3107. PMID 11161832.
  • Kaytor EN, Zhu JL, Pao CI, Phillips LS (2001). "Physiological concentrations of insulin promote binding of nuclear proteins to the insulin-like growth factor I gene". Endocrinology. 142 (3): 1041–9. doi:10.1210/endo.142.3.8046. PMID 11181517.
  • Takeda K, Inoue H, Tanizawa Y, et al. (2001). "WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain". Hum. Mol. Genet. 10 (5): 477–84. doi:10.1093/hmg/10.5.477. PMID 11181571.
  • Tessa A, Carbone I, Matteoli MC, et al. (2001). "Identification of novel WFS1 mutations in Italian children with Wolfram syndrome". Hum. Mutat. 17 (4): 348–9. doi:10.1002/humu.32. PMID 11295831. S2CID 45109749.
  • Bespalova IN, Van Camp G, Bom SJ, et al. (2002). "Mutations in the Wolfram syndrome 1 gene (WFS1) are a common cause of low frequency sensorineural hearing loss". Hum. Mol. Genet. 10 (22): 2501–8. doi:10.1093/hmg/10.22.2501. PMC 6198816. PMID 11709537.
  • Young TL, Ives E, Lynch E, et al. (2002). "Non-syndromic progressive hearing loss DFNA38 is caused by heterozygous missense mutation in the Wolfram syndrome gene WFS1". Hum. Mol. Genet. 10 (22): 2509–14. doi:10.1093/hmg/10.22.2509. PMID 11709538.
  • Crawford J, Zielinski MA, Fisher LJ, et al. (2002). "Is there a relationship between Wolfram syndrome carrier status and suicide?". Am. J. Med. Genet. 114 (3): 343–6. doi:10.1002/ajmg.10256. PMID 11920861.

External links

  • GeneReviews/NCBI/NIH/UW entry on WFS1-Related Disorders

This article incorporates text from the United States National Library of Medicine, which is in the public domain.



  • v
  • t
  • e