MTHFD1L

Protein-coding gene in the species Homo sapiens
MTHFD1L
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

2EO2

Identifiers
AliasesMTHFD1L, FTHFSDC1, MTC1THFS, dJ292B18.2, methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like, methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1 like
External IDsOMIM: 611427; MGI: 1924836; HomoloGene: 56706; GeneCards: MTHFD1L; OMA:MTHFD1L - orthologs
Gene location (Human)
Chromosome 6 (human)
Chr.Chromosome 6 (human)[1]
Chromosome 6 (human)
Genomic location for MTHFD1L
Genomic location for MTHFD1L
Band6q25.1Start150,865,679 bp[1]
End151,101,887 bp[1]
Gene location (Mouse)
Chromosome 10 (mouse)
Chr.Chromosome 10 (mouse)[2]
Chromosome 10 (mouse)
Genomic location for MTHFD1L
Genomic location for MTHFD1L
Band10|10 A1Start3,973,118 bp[2]
End4,167,081 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • right coronary artery

  • stromal cell of endometrium

  • left coronary artery

  • ascending aorta

  • endothelial cell

  • tibia

  • cerebellar hemisphere

  • sural nerve

  • germinal epithelium

  • saphenous vein
Top expressed in
  • primitive streak

  • hand

  • lens

  • bone marrow

  • calvaria

  • blood

  • spleen

  • foot

  • abdominal wall

  • cumulus cell
More reference expression data
BioGPS
n/a
Gene ontology
Molecular function
  • nucleotide binding
  • protein homodimerization activity
  • methenyltetrahydrofolate cyclohydrolase activity
  • formate-tetrahydrofolate ligase activity
  • ligase activity
  • ATP binding
  • methylenetetrahydrofolate dehydrogenase (NADP+) activity
Cellular component
  • membrane
  • mitochondrial matrix
  • mitochondrion
  • cytoplasm
Biological process
  • formate metabolic process
  • embryonic neurocranium morphogenesis
  • tetrahydrofolate interconversion
  • tetrahydrofolate metabolic process
  • neural tube closure
  • folic acid metabolic process
  • embryonic viscerocranium morphogenesis
  • folic acid-containing compound metabolic process
  • purine nucleobase biosynthetic process
  • 10-formyltetrahydrofolate biosynthetic process
  • one-carbon metabolic process
  • folic acid-containing compound biosynthetic process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

25902

270685

Ensembl

ENSG00000120254

ENSMUSG00000040675

UniProt

Q6UB35
Q4VXM1

Q3V3R1

RefSeq (mRNA)
NM_001242767
NM_001242768
NM_001242769
NM_015440
NM_001350486

NM_001350487
NM_001350488
NM_001350489
NM_001350490
NM_001350491
NM_001350492
NM_001350493

NM_001170785
NM_001170786
NM_172308

RefSeq (protein)
NP_001229696
NP_001229697
NP_001229698
NP_056255
NP_001337415

NP_001337416
NP_001337417
NP_001337418
NP_001337419
NP_001337420
NP_001337421
NP_001337422

NP_001164256
NP_001164257
NP_758512

Location (UCSC)Chr 6: 150.87 – 151.1 MbChr 10: 3.97 – 4.17 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Monofunctional C1-tetrahydrofolate synthase, mitochondrial also known as formyltetrahydrofolate synthetase, is an enzyme that in humans is encoded by the MTHFD1L gene (methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like).[5][6][7]

Function

One-carbon substituted forms of tetrahydrofolate (THF) are involved in the de novo synthesis of purines and thymidylate and support cellular methylation reactions through the regeneration of methionine from homocysteine. MTHFD1L is an enzyme involved in THF synthesis in mitochondria.[7]

In contrast to MTHFD1 that has trifunctional methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetase enzymatic activities, MTHFD1L only has formyltetrahydrofolate synthetase activity.[8]

Clinical significance

Certain variants of the MTHFD1L are associated neural tube defects.[9] Different alleles of SNP rs7646 in the 3′ UTR of MTHFD1L are differentially regulated by microRNAs affecting MTHFD1L expression.[10]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000120254 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000040675 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Prasannan P, Pike S, Peng K, Shane B, Appling DR (October 2003). "Human mitochondrial C1-tetrahydrofolate synthase: gene structure, tissue distribution of the mRNA, and immunolocalization in Chinese hamster ovary calls". J. Biol. Chem. 278 (44): 43178–87. doi:10.1074/jbc.M304319200. PMC 1457088. PMID 12937168.
  6. ^ Christensen KE, Mackenzie RE (2008). "Mitochondrial methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetases". Vitam. Horm. 79: 393–410. doi:10.1016/S0083-6729(08)00414-7. PMID 18804703.
  7. ^ a b "Entrez Gene: methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like".
  8. ^ Christensen KE, Patel H, Kuzmanov U, Mejia NR, MacKenzie RE (March 2005). "Disruption of the mthfd1 gene reveals a monofunctional 10-formyltetrahydrofolate synthetase in mammalian mitochondria". J. Biol. Chem. 280 (9): 7597–602. doi:10.1074/jbc.M409380200. PMID 15611115.
  9. ^ Parle-McDermott A, Pangilinan F, O'Brien KK, Mills JL, Magee AM, Troendle J, Sutton M, Scott JM, Kirke PN, Molloy AM, Brody LC (December 2009). "A common variant in MTHFD1L is associated with neural tube defects and mRNA splicing efficiency". Hum. Mutat. 30 (12): 1650–6. doi:10.1002/humu.21109. PMC 2787683. PMID 19777576.
  10. ^ Minguzzi, Stefano; Selcuklu, S. Duygu; Spillane, Charles; Parle-McDermott, Anne (2013-12-18). "An NTD-Associated Polymorphism in the 3′ UTR of MTHFD1L can Affect Disease Risk by Altering miRNA Binding". Human Mutation. 35 (1): 96–104. doi:10.1002/humu.22459. ISSN 1059-7794. PMID 24123340. S2CID 6583361.

Further reading

  • McKnight AJ, Maxwell AP, Fogarty DG, et al. (2009). "Genetic analysis of coronary artery disease single-nucleotide polymorphisms in diabetic nephropathy". Nephrol. Dial. Transplant. 24 (8): 2473–6. doi:10.1093/ndt/gfp015. PMID 19336575.
  • Bressler J, Folsom AR, Couper DJ, et al. (2010). "Genetic variants identified in a European genome-wide association study that were found to predict incident coronary heart disease in the atherosclerosis risk in communities study". Am. J. Epidemiol. 171 (1): 14–23. doi:10.1093/aje/kwp377. PMC 2800304. PMID 19955471.
  • Sugiura T, Nagano Y, Inoue T, Hirotani K (2004). "A novel mitochondrial C1-tetrahydrofolate synthetase is upregulated in human colon adenocarcinoma". Biochem. Biophys. Res. Commun. 315 (1): 204–11. doi:10.1016/j.bbrc.2004.01.035. PMID 15013446.
  • Samani NJ, Erdmann J, Hall AS, et al. (2007). "Genomewide association analysis of coronary artery disease". N. Engl. J. Med. 357 (5): 443–53. doi:10.1056/NEJMoa072366. PMC 2719290. PMID 17634449.
  • Parle-McDermott A, Pangilinan F, O'Brien KK, et al. (2009). "A common variant in MTHFD1L is associated with neural tube defects and mRNA splicing efficiency". Hum. Mutat. 30 (12): 1650–6. doi:10.1002/humu.21109. PMC 2787683. PMID 19777576.
  • Pridgeon JW, Webber EA, Sha D, et al. (2009). "Proteomic analysis reveals Hrs ubiquitin-interacting motif-mediated ubiquitin signaling in multiple cellular processes". FEBS J. 276 (1): 118–31. doi:10.1111/j.1742-4658.2008.06760.x. PMC 2647816. PMID 19019082.
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2002). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. Bibcode:2002PNAS...9916899M. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
  • Walkup AS, Appling DR (2005). "Enzymatic characterization of human mitochondrial C1-tetrahydrofolate synthase". Arch. Biochem. Biophys. 442 (2): 196–205. doi:10.1016/j.abb.2005.08.007. PMID 16171773.
  • Fountoulakis M, Gulesserian T, Lubec G (2003). "Overexpression of C1-tetrahydrofolate synthase in fetal Down Syndrome brain". Advances in Down Syndrome Research. Journal of Neural Transmission Supplement 67. Vol. 67. pp. 85–93. doi:10.1007/978-3-7091-6721-2_7. ISBN 978-3-211-40776-9. PMID 15068241. {{cite book}}: |journal= ignored (help)
  • Sowa ME, Bennett EJ, Gygi SP, Harper JW (2009). "Defining the human deubiquitinating enzyme interaction landscape". Cell. 138 (2): 389–403. doi:10.1016/j.cell.2009.04.042. PMC 2716422. PMID 19615732.
  • Vieira AR, McHenry TG, Daack-Hirsch S, et al. (2008). "Candidate gene/loci studies in cleft lip/palate and dental anomalies finds novel susceptibility genes for clefts". Genet. Med. 10 (9): 668–74. doi:10.1097/GIM.0b013e3181833793. PMC 2734954. PMID 18978678.
  • Ewing RM, Chu P, Elisma F, et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Mol. Syst. Biol. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Portal:
  • icon Biology