Community matrix

Community Matrix

In mathematical biology, the community matrix is the linearization of a generalized Lotka–Volterra equation at an equilibrium point.[1] The eigenvalues of the community matrix determine the stability of the equilibrium point.

For example, the Lotka–Volterra predator–prey model is

d x d t = x ( α β y ) d y d t = y ( γ δ x ) , {\displaystyle {\begin{array}{rcl}{\dfrac {dx}{dt}}&=&x(\alpha -\beta y)\\{\dfrac {dy}{dt}}&=&-y(\gamma -\delta x),\end{array}}}

where x(t) denotes the number of prey, y(t) the number of predators, and α, β, γ and δ are constants. By the Hartman–Grobman theorem the non-linear system is topologically equivalent to a linearization of the system about an equilibrium point (x*, y*), which has the form

[ d u d t d v d t ] = A [ u v ] , {\displaystyle {\begin{bmatrix}{\frac {du}{dt}}\\{\frac {dv}{dt}}\end{bmatrix}}=\mathbf {A} {\begin{bmatrix}u\\v\end{bmatrix}},}

where u = xx* and v = yy*. In mathematical biology, the Jacobian matrix A {\displaystyle \mathbf {A} } evaluated at the equilibrium point (x*, y*) is called the community matrix.[2] By the stable manifold theorem, if one or both eigenvalues of A {\displaystyle \mathbf {A} } have positive real part then the equilibrium is unstable, but if all eigenvalues have negative real part then it is stable.

See also

  • Paradox of enrichment

References

  1. ^ Berlow, E. L.; Neutel, A.-M.; Cohen, J. E.; De Ruiter, P. C.; Ebenman, B.; Emmerson, M.; Fox, J. W.; Jansen, V. A. A.; Jones, J. I.; Kokkoris, G. D.; Logofet, D. O.; McKane, A. J.; Montoya, J. M; Petchey, O. (2004). "Interaction Strengths in Food Webs: Issues and Opportunities". Journal of Animal Ecology. 73 (5): 585–598. doi:10.1111/j.0021-8790.2004.00833.x. JSTOR 3505669.
  2. ^ Kot, Mark (2001). Elements of Mathematical Ecology. Cambridge University Press. p. 144. ISBN 0-521-00150-1.
  • Murray, James D. (2002), Mathematical Biology I. An Introduction, Interdisciplinary Applied Mathematics, vol. 17 (3rd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-95223-9.


  • v
  • t
  • e