Polinomi de Neumann

En matemàtiques, un polinomi de Neumann, introduït per Carl Neumann per al cas especial α = 0 {\displaystyle \alpha =0} , és un polinomi en 1/z s'utilitza per desenvolupar funcions en termes de funcions de Bessel.[1]

Els primers polinomis són

O 0 ( α ) ( t ) = 1 t , {\displaystyle O_{0}^{(\alpha )}(t)={\frac {1}{t}},}
O 1 ( α ) ( t ) = 2 α + 1 t 2 , {\displaystyle O_{1}^{(\alpha )}(t)=2{\frac {\alpha +1}{t^{2}}},}
O 2 ( α ) ( t ) = 2 + α t + 4 ( 2 + α ) ( 1 + α ) t 3 , {\displaystyle O_{2}^{(\alpha )}(t)={\frac {2+\alpha }{t}}+4{\frac {(2+\alpha )(1+\alpha )}{t^{3}}},}
O 3 ( α ) ( t ) = 2 ( 1 + α ) ( 3 + α ) t 2 + 8 ( 1 + α ) ( 2 + α ) ( 3 + α ) t 4 , {\displaystyle O_{3}^{(\alpha )}(t)=2{\frac {(1+\alpha )(3+\alpha )}{t^{2}}}+8{\frac {(1+\alpha )(2+\alpha )(3+\alpha )}{t^{4}}},}
O 4 ( α ) ( t ) = ( 1 + α ) ( 4 + α ) 2 t + 4 ( 1 + α ) ( 2 + α ) ( 4 + α ) t 3 + 16 ( 1 + α ) ( 2 + α ) ( 3 + α ) ( 4 + α ) t 5 . {\displaystyle O_{4}^{(\alpha )}(t)={\frac {(1+\alpha )(4+\alpha )}{2t}}+4{\frac {(1+\alpha )(2+\alpha )(4+\alpha )}{t^{3}}}+16{\frac {(1+\alpha )(2+\alpha )(3+\alpha )(4+\alpha )}{t^{5}}}.}

Una forma general del polinomi és

O n ( α ) ( t ) = α + n 2 α k = 0 n / 2 ( 1 ) n k ( n k ) ! k ! ( α n k ) ( 2 t ) n + 1 2 k , {\displaystyle O_{n}^{(\alpha )}(t)={\frac {\alpha +n}{2\alpha }}\sum _{k=0}^{\lfloor n/2\rfloor }(-1)^{n-k}{\frac {(n-k)!}{k!}}{-\alpha \choose n-k}\left({\frac {2}{t}}\right)^{n+1-2k},}

i tenen la funció generatriu

( z 2 ) α Γ ( α + 1 ) 1 t z = n = 0 O n ( α ) ( t ) J α + n ( z ) , {\displaystyle {\frac {\left({\frac {z}{2}}\right)^{\alpha }}{\Gamma (\alpha +1)}}{\frac {1}{t-z}}=\sum _{n=0}O_{n}^{(\alpha )}(t)J_{\alpha +n}(z),}

on J són funcions de Bessel.

Per a desenvolupar una funció f en la forma

f ( z ) = n = 0 a n J α + n ( z ) {\displaystyle f(z)=\sum _{n=0}a_{n}J_{\alpha +n}(z)\,}

per a | z | < c {\displaystyle |z|<c} , fem

a n = 1 2 π i | z | = c Γ ( α + 1 ) ( z 2 ) α f ( z ) O n ( α ) ( z ) d z , {\displaystyle a_{n}={\frac {1}{2\pi i}}\oint _{|z|=c'}{\frac {\Gamma (\alpha +1)}{\left({\frac {z}{2}}\right)^{\alpha }}}f(z)O_{n}^{(\alpha )}(z)\,dz,}

on c < c {\displaystyle c'<c} i c és la distància de la singularitat més propera de z α f ( z ) {\displaystyle z^{-\alpha }f(z)} de z = 0 {\displaystyle z=0} .

Exemples

Un exemple és el desenvolupament

( 1 2 z ) s = Γ ( s ) k = 0 ( 1 ) k J s + 2 k ( z ) ( s + 2 k ) ( s k ) , {\displaystyle \left({\tfrac {1}{2}}z\right)^{s}=\Gamma (s)\cdot \sum _{k=0}(-1)^{k}J_{s+2k}(z)(s+2k){-s \choose k},}

o més general, la fórmula Sonine[2]

e i γ z = Γ ( s ) k = 0 i k C k ( s ) ( γ ) ( s + k ) J s + k ( z ) ( z 2 ) s . {\displaystyle e^{i\gamma z}=\Gamma (s)\cdot \sum _{k=0}i^{k}C_{k}^{(s)}(\gamma )(s+k){\frac {J_{s+k}(z)}{\left({\frac {z}{2}}\right)^{s}}}.}

on C k ( s ) {\displaystyle C_{k}^{(s)}} és el polinomi de Gegenbauer. Llavors,

( z 2 ) 2 k ( 2 k 1 ) ! J s ( z ) = i = k ( 1 ) i k ( i + k 1 2 k 1 ) ( i + k + s 1 2 k 1 ) ( s + 2 i ) J s + 2 i ( z ) , {\displaystyle {\frac {\left({\frac {z}{2}}\right)^{2k}}{(2k-1)!}}J_{s}(z)=\sum _{i=k}(-1)^{i-k}{i+k-1 \choose 2k-1}{i+k+s-1 \choose 2k-1}(s+2i)J_{s+2i}(z),}
n = 0 t n J s + n ( z ) = e t z 2 t s j = 0 ( z 2 t ) j j ! γ ( j + s , t z 2 ) Γ ( j + s ) = 0 e z x 2 2 t z x t J s ( z 1 x 2 ) 1 x 2 s d x , {\displaystyle \sum _{n=0}t^{n}J_{s+n}(z)={\frac {e^{\frac {tz}{2}}}{t^{s}}}\sum _{j=0}{\frac {\left(-{\frac {z}{2t}}\right)^{j}}{j!}}{\frac {\gamma \left(j+s,{\frac {tz}{2}}\right)}{\,\Gamma (j+s)}}=\int _{0}^{\infty }e^{-{\frac {zx^{2}}{2t}}}{\frac {zx}{t}}{\frac {J_{s}(z{\sqrt {1-x^{2}}})}{{\sqrt {1-x^{2}}}^{s}}}\,dx,}

la funció hipergeomètrica confluent

M ( a , s , z ) = Γ ( s ) k = 0 ( 1 t ) k L k ( a k ) ( t ) J s + k 1 ( 2 t z ) ( t z ) s k 1 , {\displaystyle M(a,s,z)=\Gamma (s)\sum _{k=0}^{\infty }\left(-{\frac {1}{t}}\right)^{k}L_{k}^{(-a-k)}(t){\frac {J_{s+k-1}\left(2{\sqrt {tz}}\right)}{({\sqrt {tz}})^{s-k-1}}},}

i en particular

J s ( 2 z ) z s = 4 s Γ ( s + 1 2 ) π e 2 i z k = 0 L k ( s 1 / 2 k ) ( i t 4 ) ( 4 i z ) k J 2 s + k ( 2 t z ) t z 2 s + k , {\displaystyle {\frac {J_{s}(2z)}{z^{s}}}={\frac {4^{s}\Gamma \left(s+{\frac {1}{2}}\right)}{\sqrt {\pi }}}e^{2iz}\sum _{k=0}L_{k}^{(-s-1/2-k)}\left({\frac {it}{4}}\right)(4iz)^{k}{\frac {J_{2s+k}\left(2{\sqrt {tz}}\right)}{{\sqrt {tz}}^{2s+k}}},}

la fórmula de canvi d'índex

Γ ( ν μ ) J ν ( z ) = Γ ( μ + 1 ) n = 0 Γ ( ν μ + n ) n ! Γ ( ν + n + 1 ) ( z 2 ) ν μ + n J μ + n ( z ) , {\displaystyle \Gamma (\nu -\mu )J_{\nu }(z)=\Gamma (\mu +1)\sum _{n=0}{\frac {\Gamma (\nu -\mu +n)}{n!\Gamma (\nu +n+1)}}\left({\frac {z}{2}}\right)^{\nu -\mu +n}J_{\mu +n}(z),}

el desenvolupament de Taylor (fórmula d'addició)

J s ( z 2 2 u z ) ( z 2 2 u z ) ± s = k = 0 ( ± u ) k k ! J s ± k ( z ) z ± s , {\displaystyle {\frac {J_{s}\left({\sqrt {z^{2}-2uz}}\right)}{\left({\sqrt {z^{2}-2uz}}\right)^{\pm s}}}=\sum _{k=0}{\frac {(\pm u)^{k}}{k!}}{\frac {J_{s\pm k}(z)}{z^{\pm s}}},}

(cf.[3]) i el desenvolupament de la integral de la funció de Bessel,

J s ( z ) d z = 2 k = 0 J s + 2 k + 1 ( z ) , {\displaystyle \int J_{s}(z)dz=2\sum _{k=0}J_{s+2k+1}(z),}

són del mateix tipus.

Referències

  1. Abramowitz and Stegun, p. 363, 9.1.82 ff.
  2. Erdélyi et al. 1955 II.7.10.1, p.64
  3. Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich; Geronimus, Yuri Veniaminovich; Tseytlin, Michail Yulyevich; Jeffrey, Alan. «8.515.1.». A: Table of Integrals, Series, and Products (en anglès). 8. Academic Press, Inc., 2015, p. 944. ISBN 978-0-12-384933-5. LCCN 2014010276. 

Vegeu també

  • Funció de Bessel
  • Polinomi de Bessel
  • Polinomi de Lommel
  • Sèries de Fourier–Bessel
  • Transformació de Hankel